Masse volumique:

masse volumique en kg.m⁻³ (ou kg/m³)
$$\rho = \frac{m}{V}$$
 volume en m³

Formule à connaître :

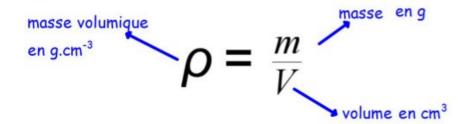
Autres unités "courantes": m en g V en cm³ ρ en g.cm⁻³ (ou g/cm³)

Formules « annexes » :

$$\rho = \frac{m}{V}$$

Pour calculer la masse m:

$$\rho \times V = m$$


Pour calculer le volume V:

$$V = \frac{m}{\rho}$$

Exemple:

Un solide de volume 14 cm³ a une masse de 124,6 g. Calculer la masse volumique de ce solide.

Exemple:

$$o = \frac{124,6}{14}$$

$$\rho = 8.9 \text{ g.cm}^{-3}$$

La masse volumique de ce solide vaut 8,9 g.cm⁻³

Valeur du poids d'un objet:

poids
en N (newton)
$$P = m \times g$$
intensité de la pesanteur en N.kg⁻¹ (ou N/kg)

$$P = m \times g$$

Pour calculer la masse m:

$$\frac{P}{g} = m$$

Pour calculer l'intensité de la pesanteur q:

$$\frac{P}{m} = g$$

Exemple:

Un objet sur Terre a une masse de 3,5 kg. L'intensité de la pesanteur sur Terre vaut 9,8 N.kg⁻¹ Calculer la valeur du poids de cet objet sur Terre.

poids en N
$$P = m \times g$$
intensité de la pesanteur en N.kg⁻¹ (ou N/kg)

$$P = 3, 5 \times 9, 8$$

La valeur du poids de cet objet sur Terre est 34,3 N.

Vitesse d'un objet:

distance parcourue vitesse en m en m.s-1 (ou m/s) durée du parcours

Autres unités "courantes": d en km t en h v en km.h-1 (ou km/h)

Formule à connaître :

Pour calculer la distance parcourue d:

Formules « annexes »:

$$v \times t = d$$

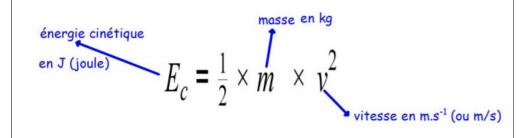
Pour calculer la durée du parcours t:

$$t = \frac{d}{v}$$

Exemple:

Un cycliste a parcouru 5000 m en 600 s. Calculer la vitesse moyenne de ce cycliste.

distance parcourue vitesse en m.s-1 (ou m/s) durée du parcours


Exemple:

$$v = \frac{5000}{600}$$

$$v = 8,3 \, ms^{-1}$$

La vitesse moyenne de ce cycliste vaut 8,3 m.s⁻¹

Valeur de l'énergie cinétique d'un objet en mouvement de translation:

Exemple:

Une voiture de 1050 kg roule à une vitesse de 9,5 m.s⁻¹ Calculer la valeur de l'énergie cinétique de cette voiture.

masse en kg énergie cinétique

$$E_c = \frac{1}{2} \times 1050 \times 9,5^2$$

Ec = 47381 J

L'énergie cinétique de cette voiture vaut 47381 J.

Loi d'Ohm:

tension en V
$$U = R \times I$$
 intensité en A

Formule à connaître :

$$U = R \times I$$

Formules « annexes »:

Pour calculer la résistance R:

$$\frac{U}{I} = R$$

Pour calculer l'intensité I:

$$\frac{U}{R} = I$$

Exemple:

Un conducteur ohmique de résistance 47 Ω est parcouru par un courant d'intensité 0,09 A.

Exemple:

Calculer la valeur de la tension aux bornes de ce conducteur ohmique.

résistance en
$$\Omega$$

$$U = R \times I$$
intensité en A

$$U = 47 \times 0,09$$

La valeur de la tension aux bornes de ce conducteur ohmique est 4,23 V.

Puissance électrique:

puissance tension en V en W (watt)
$$P = U \times I$$
 intensité en A

$$P = U \times I$$

Pour calculer la tension U:

$$\frac{P}{I} = U$$

Pour calculer l'intensité I:

$$\frac{P}{U} = I$$

Exemple:

Un appareil électrique a une tension à ses bornes de 6 V. Il est parcouru par un courant d'intensité 0,3 A.

Calculer la valeur de la puissance électrique reçue par cet appareil.

puissance en W
$$P = U \times I$$
 intensité en A

$$P = 6 \times 0, 3$$

La valeur de la puissance électrique reçue par cet appareil est 1,8 W.

Formule à connaître :	Formules « annexes » :	Exemple :
Energie électrique:	$E = P \times t$	Exemple: Une télévision de puissance électrique 0,1 kW a fonctionné pendant 2 heures.
énergie puissance en W (watt)	Pour calculer la puissance P:	Calculer la valeur, en kWh, de l'énergie utilisée par cette télévision.
en J (joule) $E = P \times t$ durée d'utilisation en s	$\frac{E}{t} = P$	en kWh $E = P \times t$ durée d'utilisation en h
	Pour calculer la durée d'utilisation t:	
Autres unités "courantes": P en kW (kilowatt) t en h (heure) E en kWh (kilowattheure)	$\frac{E}{P} = t$	$E = 0, 1 \times 2$
		E = 0,2 kWh
		La valeur de l'énergie électrique utilisée par cette télévision est 0,2 kWh.